SPECIFICATIONS FOR

RECORD OUTPUT VALIDATION FOR CDL JAVA CONVERTERS

1.
ABOUT THESE SPECIFICATIONS

Record validation will occur in three places during the conversion processing of MARC input records:

1. The MARC libraries

Validation takes place when parsing the input record or when dumping the output record object to a string. Validation is not source specific.

2. The converters

Source-specific validation takes place within each of the Java converters.

3. Record output validation

Validation takes place on all records output from the converters. Validation is not source specific.

This specification covers the third category: record output validation.

2. FILES

2.2
INPUT FILES

All converter input files are in MARC format, but the format of local data varies by input source and system vendor.

2.3
OUTPUT FILES

CDL converters output three types of files:

1. Reject Files

Contain records with ‘fatal errors’ that prevent their being loaded into the union catalog. Records are written to the reject file in the format they are in at the time of rejection.

2. Error Files

Contain records with errors that are non-fatal and that therefore do not prevent their being loaded into the union catalog. Records will be written to error files with local data in CDL/MARC21 embedded 852 fields and error messages in 998 fields. Error files will be made available to the source that submitted the input file so that it can identify errors and correct them in future update files.

3. Out Files

Contain both error-free records and records with non-fatal errors. Records will be written to out files with local data in CDL/MARC21 embedded 852 fields. Out files will be loaded into the union catalog.

3.
RECORDS TO BE VALIDATED

Validation described in this document is not source-specific and is performed on all records output by all converters. Note, however, that there is a run time parameter for the converters – ‘validateout’ that can be set to ‘N’ to bypass validation under special circumstances.

4.
TYPES OF ERRORS
Two types of errors can be detected during output record validation: fatal and non-fatal.

4.1
FATAL ERRORS

Records with fatal errors will not be written to the converter’s out file, but will instead be written to its reject file. Therefore records with fatal errors will not be loaded into the union catalog.

For each rejected record, a brief error message will be written to the converter program’s LOG. For more information on the error messages written to the LOG, see Section 6.

4.2
NON-FATAL ERRORS

Records with non-fatal errors will be written to both the out file and to the error file.

Therefore records with non-fatal errors will be loaded into the union catalog via the out file.

Before records are written to any output files, a 998 field will be created in them that describes the error detected and provides enough information for the owning campus to retrieve the records in the union catalog. One 998 field will be created for each error detected. Output records may therefore have multiple 998 fields. For more information on the 998 field, see Section 7.

5.
 RECORD VALIDATION ROUTINE

Check each record for the following and proceed as instructed.

5.1
VALIDATION: FATAL ERRORS
5.1.1
INVALID MARC RECORD

records to check: ALL records
Check each record before writing it out to make sure it complies with MARC record size limits (length of fields, length of record, etc.). If it does not, write it to the converter’s reject file. Send a message to the log file that says:

"converted record could not be dumped to marc record"

5.1.2
 MISSING 901 FIELD

records to check: ALL records

Check each output record to make sure that it contains a 901 field. If there is no 901 field, write the record to the converter’s reject file. Send a message to the log that says :

"901 field is missing"

5.1.3
MORE THAN ONE 901 FIELD

Check each output record to make sure that it contains no more than one 901 field. If it does, write the record to the converter’s reject file. Send a message to the log that says :

"More than one 901 field in output record"
5.1.4
901 LACKS SUBFIELD $a

Check each output record to make sure that its 901 field contains a $a. If it does not, write the record to the converter’s reject file. Send a message to the log that says

"901 field has no $a subfield"

5.1.5
901 HAS MORE THAN ONE SUBFIELD $a

Check each output record to make sure that its 901 field contains only one $a. If it contains more, write the record to the converter’s reject file. Send a message to the log that says

"901 field has more than one $a subfield"

5.1.6
901 SUBFIELD $a IS EMPTY

Check each output record to make sure that its 901 $a is not null. If it is, write the record to the converter’s reject file. Send a message to the log that says

"901 subfield $a is empty"

5.1.7
901 LACKS SUBFIELD $b

Check each output record to make sure that its 901 field contains a $b. If it does not, write the record to the converter’s reject file. Send a message to the log that says

"901 field has no $b subfield"

5.1.8
901 HAS MORE THAN ONE SUBFIELD $b

Check each output record to make sure that its 901 field contains only one $b. If it contains more, write the record to the converter’s reject file. Send a message to the log that says

"901 field has more than one $b subfield"

5.1.9
901 SUBFIELD $b IS EMPTY

Check each output record to make sure that its 901 $b is not null. If it is, write the record to the converter’s reject file. Send a message to the log that says

"901 subfield $b is empty"

5.1.10
 NO 852 FIELD

records to check: ALL records

Check each output record to make sure that it contains an 852 field. If there is no 852 field, write the record to the converter’s reject file. Send a message to the log that says :

"No 852 was generated"

5.1.11
852 LACKS SUBFIELD $a

Output records may contain one or more 852 fields. Check each 852 to make sure it

contains a $a. If it does not, write the record to the converter’s reject file. Send a message to the log that says

"852 field has no $a subfield"

5.1.12
852 HAS MORE THAN ONE SUBFIELD $a

Check each output record to make sure that each 852 field contains only one $a. If any 852 contains more, write the record to the converter’s reject file. Send a message to the log that says

"852 field has more than one $a subfield"

5.1.13
852 SUBFIELD $a IS EMPTY

Check each output record to make sure that the $a of each 852 is not null. If it is, write the record to the converter’s reject file. Send a message to the log that says

"852 subfield $a is empty"

5.1.14
852 LACKS SUBFIELD $b

Output records may contain one or more 852 fields. Check each 852 to make sure it

contains a $b. If it does not, write the record to the converter’s reject file. Send a message to the log that says

"852 field has no $b subfield"

5.1.15
852 SUBFIELD $b IS EMPTY

Check each output record to make sure that the $b of each 852 is not null. If it is, write the record to the converter’s reject file. Send a message to the log that says

"852 subfield $b is empty"

5.2.
VALIDATION: NON-FATAL ERRORS

5.2.1
 NO 245 FIELD

records to check: non-delete records only

For any non-delete record (e.g. Leader position 05 STATUS is not ‘d’) that lacks a 245 field, create a 998 field with the following $a, $b, and $c:

$a <maintenance code as found in output 901 $a>

$b 1002

$c Record contains no 245 field
5.2.2
 UNKNOWN LOCATION CODE

records to check: non-delete records that contain 852 fields

If a record lacks an 852, do not check for unknown location code.

The 852 $b contains a location code that is expected to be on the CDL table of known locations. Check the $b of each 852 field in non-delete records (e.g. Leader position 05 STATUS is not ‘d’) to see if the value is on the location table. If it is not, create a 998 field with the following $a, $b, and $c:

$a <maintenance code as found in output 901 $a>

$b 1003

$c Record contains the unknown location code <unknown location code goes here>’

Location table lookup will be done by creating a key that combines the content of the 852 $a (maintenance code assigned by CDL) and the 852 $b (location code as sent by input source).

e.g.:

852 $a SDB $b cdcar

key: SDBcdcar

5.2.3
 INVALID LEADER TYPE - LEADER POSITION 06

records to check: non-delete records only

For any non-delete record (e.g. Leader position 05 STATUS is not ‘d’) that contains a value in Leader position 6 that is not on the list of valid MARC TYPE values below, create a 998 field with the following contents:

$a <maintenance code as found in output 901 $a>

$b 1004

$c Record contains the invalid leader type <invalid TYPE goes here>
Valid MARC TYPE values.

Value
Meaning

a
 - Language material

c
 - Printed music

d
 - Manuscript music

e
 - Printed map

f
 - Manuscript map

g
 - Projected medium

i
 - Nonmusical sound recoding

j
 - Musical sound recording

k
 - Two-dimensional nonprojectable graphic

m
 - Computer file

o
- Kit

p
- Mixed material

r
- Three-dimensional artifacts or naturally occurring object

t
- Manuscript language material

5.2.4
 INVALID LEADER BIBLIOGRAPHIC LEVEL - LEADER POSITION 07

records to check: non-delete records only

For any non-delete record (e.g. Leader position 05 STATUS is not ‘d’) that contains a value in Leader position 7 that is not on the list of valid MARC Bibliographic Level values below, create a 998 field with the following contents:

$a <maintenance code as found in output 901 $a>

$b 1005

$c Record contains the invalid bibliographic level <invalid Bib Level goes here>
Valid MARC Bibliographic Level Values

Value
Meaning

a
- Monographic component part

b
- Serial component part

c
- Collection

d
- Subunit

i
- Integrating resource

m
- Monograph

s
- Serial

5.2.5
 NO 005 FIELD

records to check: ALL records (including deletes)

Do NOT create a 998 field for this error

If the output record lacks an 005 field, create one from the FILEDATE parameter used in the program run.

FILEDATE Parm:
20010525000000.0

005:

20010525000000.0

6. REJECT MESSAGES IN CONVERTER LOGS

For each record rejected during converter processing, a message will be written to the converter’s log that gives the input record number, the reject file record number, and the error message. Here is a sample message:

11733 [RunUCB_1028839388887] ERROR org.cdlib.marcconvert.RunConvert - Record Rejected: I-5375 R-1 Field terminator not found

I-5375 = Sequential record number in the input file. In this case, the 5,375th input record.

R-1 = Sequential record number in the reject file. In this case, the 1st record in the reject file.

Field terminator not found = The error message

7. 998 FIELDS FOR NON-FATAL ERRORS
998 FIELD STRUCTURE

Indicator one:

blank

Indicator two:

blank

Subfield

Contents

$a

Input source maintenance code as output in 901 $a

$b

Error code

$c

Error message

$d

Date and time of program run

$e

Record ID as found in output 901 $b

e.g.:

998
$a SDB $b 1001 $c Record did not contain a location code in the expected

 place. $d 20050317140301.0 $e 49931

Rebecca Doherty

Last revision: 8/27/02; 8/30/02; 5/22/03; 6/26/03; 5/26/04; 3/21/05;

PAGE
5

